13 research outputs found

    Reconfiguration and tool path planning of hexapod machine tools

    Get PDF
    Hexapod machine tools have the potential to achieve increased accuracy, speed, acceleration and rigidity over conventional machines, and are regarded by many researchers as the machine tools of the next generation. However, their small and complex workspace often limits the range of tasks they can perform, and their parallel structure raises many new issues preventing the direct use of conventional tool path planning methods. This dissertation presents an investigation of new reconfiguration and tool path planning methods for enhancing the ability of hexapods to adapt to workspace changes and assisting them in being integrated into the current manufacturing environments. A reconfiguration method which includes the consideration of foot-placement space (FPS) determination and placement parameter identification has been developed. Based on the desired workspace of a hexapod and the motion range of its leg modules, the FPS of a hexapod machine is defined and a construction method of the FPS is presented. An implementation algorithm for the construction method is developed. The equations for identifying the position and orientation of the base joints for the hexapod at a new location are formulated. For the position identification problem, an algorithm based on Dialytic Elimination is derived. Through examples, it is shown that the FPS determination method can provide feasible locations for the feet of the legs to realize the required workspace. It is also shown that these identification equations can be solved through a numerical approach or through Dialytic Elimination using symbolic manipulation. Three dissimilarities between hexapods and five-axis machines are identified and studied to enhance the basic understanding of tool path planning for hexapods. The first significant difference is the existence of an extra degree of freedom (γ angle). The second dissimilarity is that a hexapod has a widely varying inverse Jacobian over the workspace. This leads to the result that a hexapod usually has a nonlinear path when following a straight-line segment over two sampled poses. These factors indicate that the traditional path planning methods should not be used for hexapods without modification. A kinematics-based tool path planning method for hexapod machine tools is proposed to guide the part placement and the determination of γ angle. The algorithms to search for the feasible part locations and γ sets are presented. Three local planning methods for the γ angle are described. It is demonstrated that the method is feasible and is effective in enhancing the performance of the hexapod machine. As the nonlinear error is computationally expensive to evaluate in real time, the measurement of total leg length error is proposed. This measure is proved to be effective in controlling the nonlinear error

    Novel agents and clinical trials in castration-resistant prostate cancer: latest updates from 2023 ASCO-GU Cancers Symposium

    No full text
    Abstract Numerous novel and effective therapeutic agents and clinical trials addressing castration-resistant prostate cancer (CRPC) were reported during the 2023 American Society of Clinical Oncology-Genitourinary (ASCO-GU) Cancers Symposium. Notably, radionuclide drug conjugates (RDC), specifically 177Lu/111In-J591 and 225Ac-J591, exhibited enhanced therapeutic efficacy in treating patients with CRPC. Furthermore, promising treatment approaches for CRPC included dual anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and anti-programmed death-1 (PD-1) blockade in rare tumors (DART)-Lorigerlimab, prostate stem cell antigen (PSCA)-directed chimeric antigen receptor (CAR)-T cell immunotherapy-BPX-601, and protein kinase inhibitor (AKTi)-CAPltello-280. We have summarized the latest CRPC treatment strategies presented at the 2023 ASCO-GU Cancers Symposium, along with recent advances in CRPC clinical trials

    Remote Sensing Retrieval of Total Nitrogen in the Pearl River Delta Based on Landsat8

    No full text
    The Pearl River Delta in South China is subject to severe eutrophication, which is significantly exacerbated by the total nitrogen (TN). Remote sensing technology with large-scale synchronous observations in the Pearl River Delta can effectively monitor organic pollution. Statistical methods based on remote sensing images have been widely used in water quality parameter retrieval for inland rivers, reservoirs, and lakes, but have seldom been applied in the Pearl River Delta. TN is also a non-optically active substance, so it is difficult to retrieve TN through analysis methods. This study retrieves the concentration of total nitrogen (TN) based on Landsat8 images of the Pearl River Delta using a statistical method. The stepwise regression function is built by analyzing the TN concentration and the single-band, two-band, and three-band spectral information groups measured by an ASD FieldSpec3 spectrometer. The retrieval results show that the proposed method performs well with a small mean absolute error (MAE) (0.36 mg/L for TN) and high agreement (R2 = 0.61 for TN) between the in situ data and the retrieval concentration. The results demonstrate that the concentration of TN in the east of the Pearl River Delta was higher than in the west. Dachan Bay and Shenzhen Bay had the highest TN concentrations, which were around 3.02 mg/L and 3.67 mg/L. The 750–850 nm band could be an important reference for further exploring the spectral characteristics and retrieval of TN. The retrieval method in this study is easy to implement and convenient for local TN distribution capture, which can provide a timely reference for daily water quality supervision and management in the Pearl River Delta

    Blood-based liquid biopsy: insights into early detection, prediction, and treatment monitoring of bladder cancer

    No full text
    Abstract Bladder cancer (BC) is a clinical challenge worldwide with late clinical presentation, poor prognosis, and low survival rates. Traditional cystoscopy and tissue biopsy are routine methods for the diagnosis, prognosis, and monitoring of BC. However, due to the heterogeneity and limitations of tumors, such as aggressiveness, high cost, and limited applicability of longitudinal surveillance, the identification of tumor markers has attracted significant attention in BC. Over the past decade, liquid biopsies (e.g., blood) have proven to be highly efficient methods for the discovery of BC biomarkers. This noninvasive sampling method is used to analyze unique tumor components released into the peripheral circulation and allows serial sampling and longitudinal monitoring of tumor progression. Several liquid biopsy biomarkers are being extensively studied and have shown promising results in clinical applications of BC, including early detection, detection of microscopic residual disease, prediction of recurrence, and response to therapy. Therefore, in this review, we aim to provide an update on various novel blood-based liquid biopsy markers and review the advantages and current limitations of liquid biopsy in BC therapy. The role of blood-based circulating tumor cells, circulating tumor DNA, cell-free RNA, exosomes, metabolomics, and proteomics in diagnosis, prognosis, and treatment monitoring, and their applicability to the personalized management of BC, are highlighted

    Study on Heat Storage Performance of Phase Change Reservoir in Underground Protection Engineering

    No full text
    In view of the main problems of the condensing heat discharge modes of the existing underground air-conditioning system, the technical scheme of using phase change heat storage modules to improve the heat storage capacity of the reservoir is proposed. By establishing a 3D flow and transient heat transfer model of the phase change reservoir, the effects of thermal property parameters, package size and arrangement of the phase change heat storage modules on the heat storage performance of the phase change reservoir were quantitatively analyzed based on three indexes: heat storage capacity per volume Δq, guaranteed efficiency coefficient η and slope of temperature rise per unit load ε. The results show that when the phase change temperature is 29 °C (23 °C increased to 33 °C) and the latent heat value is 250 kJ/kg (100 kJ/kg increased to 250 kJ/kg), Δq (110.92 MJ/m3, 112.83 MJ/m3) and η (1.22, 1.24) under both conditions are at their most, respectively, indicating that the phase change temperature should be less than 4 °C at the outlet temperature of the reservoir, and phase change materials with a high latent heat should be selected in engineering design whenever possible. When the size of the phase change module is 150 mm × 20 mm and the phase change reservoir adopts four intakes, ε (0.259, 0.244) under both conditions is the smallest, indicating that increasing the area of the phase change heat storage module and the fluid and increasing the inlet disturbance of the reservoir can enhance its heat storage capacity
    corecore